Изучаем менеджмент
Аксиомы Шепли:
. Аксиома эффективности. Если S - любой носитель игры с характеристической функцией u, то
= u (S)
Иными словами, "справедливость требует", что при разделении общего выигрыша носителя игры ничего не выделять на долю посторонних, не принадлежащих этому носителю, равно как и ничего не взимать с них.
. Аксиома симметрии. Для любой перестановки p и iÎN должно выполняться (pu) = ji (u), т.е. игроки, одинаково входящие в игру, должны "по справедливости" получать одинаковые выигрыши.
. Аксиома агрегации. Если есть две игры с характеристическими функциями u¢ и u¢¢, то
j i (u¢ + u¢¢) = j i (u¢) + j i (u¢¢),
т.е. ради "справедливости" необходимо считать, что при участии игроков в двух играх их выигрыши в отдельных играх должны складываться.
Определение. Вектором цен (вектором Шепли) игры с характеристической функцией u называется n-мерный вектор
j (u) = (j1 (u), j2 (u), ., jn (u)),
удовлетворяющий аксиомам Шепли.
Существование вектора Шепли вытекает из следующей теоремы
Теорема. Существует единственная функция j, определённая для всех игр и удовлетворяющая аксиомам Шепли.
Определение. Характеристическая функция wS (T), определённая для любой коалиции S, называется простейшей, если
wS (T) =
Содержательно простейшая характеристическая функция описывает такое положение дел, при котором множество игроков S выигрывает единицу тогда и только тогда, когда оно содержит некоторую основную минимальную выигрывающую коалицию S. Вектор Шепли содержательно можно интерпретировать следующим образом: предельная величина, которую вносит i-й игрок в коалицию T, выражается как u (T) - u (T \{i}) и считается выигрышем i-го игрока; gi (T) - это вероятность того, что i-й игрок вступит в коалицию T \{i}; ji (u) - средний выигрыш i-го игрока в такой схеме интерпретации. В том случае, когда u - простейшая,
Следовательно
,
где суммирование по T распространяется на все такие выигрывающие коалиции T, что коалиция T \{i}не является выигрывающей.
Пример. Рассматривается корпорация из четырёх акционеров, имеющих акции соответственно в следующих размерах
1 = 10, a2 = 20, a3 = 30, a4 = 40.
Любое решение утверждается акционерами, имеющими в сумме большинство акций. Это решение считается выигрышем, равным 1. Поэтому данная ситуация может рассматриваться как простая игра четырёх игроков, в которой выигрывающими коалициями являются следующие:
{2; 4}, {3; 4},
{1; 2; 3}, {1; 2; 4}, {2; 3; 4}, {1; 3; 4},
{1; 2; 3; 4}.
Найдём вектор Шепли для этой игры. При нахождении j1 необходимо учитывать, что имеется только одна коалиция T = {1; 2; 3}, которая выигрывает, а коалиция T \{1} = {2; 3} не выигрывает. В коалиции T имеется t = 3 игрока, поэтому
Все права принадлежат - www.learnmanage.ru